

	Aton	nic Structu	ıre
• As we	said		
Atom	s are made	up of Proton	s (P ⁺)
• AILIN			
Atoms			· (-),
Neutro	$ons(N^0)$ ar	nd Electrons (1	E ⁻)
Neutro	$ons(N^0)$ and	nd Electrons (1	E ⁻)
Neutro	$ons(N^0)$ ar	nd Electrons (I	E ⁻)
Neutro	ons(N ⁰) an Charge(e)	nd Electrons (I	E ⁻)
Protons	ons(N ⁰) ar Charge(e)	Relative Mass	E ⁻) Location In Nucleus
Protons Neutro	ons(N ⁰) ar Charge(e) 1 0	Relative Mass	E-) Location In Nucleus In Nucleus

- Another Definition:
 - A substance made of atoms which all contain the same number of protons (P⁺).

- The number of electrons in an atom is the same as the number of protons.
- Electrons are arranged in orbits around the nucleus.

It's all about electrons • Each orbit can only hold a certain number of electrons. • The second orbit can hold ______ electrons.

			Let's look at group 1														
ļ																	
Li	Be	1	hydro alkali alkali	ogen I meta I gerth			= p	oor m onmet oble a	etals als								
11 Na	Mg ¹²		trans	ition n	netals			are ea	rth me	tals							
19 K	20 Ca																
37 Rb	38 Sr																
	58																
65	Ra																

The Periodic Table

- In group 1, all the elements have just ______ electron in their outer orbit. Even Hydrogen although for this discussion I have removed it.
 - Elements with similar arrangements of electrons in their outer orbit behave in a similar way
 - Hydrogen is sort of its own group

The Periodic Table

- Since all the elements in group 1 have only one electron in their outer orbit they all have similar properties. They are all reactive metals.
- They are often called _____ Metals

H Periodic Table of the Elements Bet # hrdrogen # data metas # normality <		TYOW IC	- 3 10			αm	n 7	0	- 1'	7	The Periodic Table										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	H ¹ Li ³ Be	Periodic hydrogen alkali metals alkali earth r	Table of	f the El poor me nonmet	eme Itals als	nts		B	C	N ⁷	08	9 F	He to Ne								
37 38 39 40 41 42 43 44 45 40 47 48 49 50 51 52 53 54 54 74 <th74< th=""> 74 74 74<!--</td--><td></td><td></td><td>etals 24 25 Cr Mn I</td><td>rare ear 26 27 F0 C0</td><td>th meta</td><td></td><td></td><td></td><td></td><td></td><td>16 S 34 Se</td><td>17 Cl 35 Br</td><td>18 Ar 38 Kr</td></th74<>			etals 24 25 Cr Mn I	rare ear 26 27 F0 C0	th meta						16 S 34 Se	17 Cl 35 Br	18 Ar 38 Kr								
		39 40 41 Y Zr Nb 1									52 Te	153	Xe								

The Periodic Table

- In group 7 (17), all the elements have seven electrons in their outer orbit.
- Group 7 (17) elements all behave in very similar ways.
- They are called the _

				~											
H		Peri	odic	Tab	K,	nov of th	w g	rou Iem	ip () ents)((or 1	8)			2 He
	hydrogen alkali metals				 poor metals nonmetals 								F	10 Ne	
		alkal trans	i earth ition n	metal netals		n ra	oble g are ea	ases rth me						CI	Ar ¹⁸
														35 Br	36 Kr
														6.2	54
															Xe

The Periodic Table

- In the last group, the elements all have 8 electrons in the outer orbits. These elements are very unreactive.
- Also called _

Ionic Bonding

- As we have said, electron and their orbits are very important to the behavior of an atom.
- For example.....

Ionic Bonding

- Now let's look at the other form of ion. For example.....
- Chlorine (Cl)

Ionic Bonding

- When the electron jumps from the Na to the Cl, the atoms become Ions. One is cation the other a anion. These two charged atoms then stick together forming a compound.
 - A substance which is made of two or more kinds of atoms or ions that have joined together.

Ionic Bonding

- In the case of our Na⁺ and Cl⁻, the attraction between positive and negative ions is very strong. It is called an Ionic Bond.
 - A chemical link between two atoms caused by the electrostatic force between oppositelycharged ions in an ionic compound.

- The forces between particles that are caused by their electric charges.

- Na⁺ is a positive ion....cation
- Cl⁻ is a negative ion...anion

Ionic Bonding When Na⁺ and Cl⁻ get close to each other they arrange themselves into a pattern called a lattice Organized arrangement of ions

Covalent Bonds

• We already talked about how compounds form when electrons jump from atom to atom creating positive and negative ions. But is there another way??

Covalent Bonds

- Let's look at the compound....BrCl
- Hmmm....how can this be???

Covalent Bonds

- Both Cl and Br have seven outer electons....hmmm
- If both the Cl and the Br pick up one electron they will both become anions.....will that work?
- Can two ions of the same charge stick to each other?

Covalent Bonds

- There is another way......They can Share.
- Awww ain't that special

Covalent Bonds

- Let's look at Hydrogen (H).
- Hydrogen (H) can not exist in nature as only H....it is too reactive. In its simplest state it is found as H₂

Covalent Bonds

• H₂ does not lose electrons it shares electrons like this.

Matter

- Atoms are always in motion.
- The amount of motion dictates matters state

The Three States of Matter

- Particles are fixed in position but still vibrate
- A solid is poorly compressed and changes volume only slightly.
- Particles can not move past each other.

The Three States of Matter

- Particles will flow and take the shape of any container.
- A liquid is poorly compressed and changes volume only slightly.
- Particles are free to move around each other.

The Three States of Matter

- Particles will flow and take the shape of any container.
- Volume of a gas is dependent of the size of the contained and is easily compressed.
- Particles are free to move around each other.

The Kinetic Theorymore proof

- The movement of particles form high concentration to low concentration.

More Kinetic Theory

- _____ -the energy of motion
- Heating a solid causes its particles to vibrate faster, thus kinetic energy increases.
- As kinetic energy increases, particles break away from each other and move more freely. Eventually if the particles of a solid have enough kinetic energy, the solid melts.

More Kinetic Theory

• If you continue to heat, kinetic energy increases even more and the particles move away from each other and the substance turns to gas.

